论文标题

在德林菲尔德中心中,区别的可逆物体作为带偶的对象

The distinguished invertible object as ribbon dualizing object in the Drinfeld center

论文作者

Müller, Lukas, Woike, Lukas

论文摘要

我们证明,在Boyarchenko-drinfeld的感觉中,Drinfeld Center $ Z(\ Mathcal {C})$的$ Z(\ Mathcal {C})$ $ \ MATHCAL {C} $都带有色带Grothendieck-verdier类别的结构。从操作上讲,这使$ z(\ nathcal {c})$在框架$ e_2 $ -operad上的循环代数中。二元对象的基本对象是$ \ Mathcal {c} $的可逆对象出现在著名的nikshych-oStrik的著名Radford同构中。到等效,这是$ z(\ Mathcal {C})上的独特功能区Grothendieck-Verdier结构,扩展了已经配备了$ z(\ Mathcal {C})$的规范平衡编织结构。当且仅当$ \ Mathcal {C} $仅在Douglas-Schommer-pries-snyder的意义上,此功能区Grothendieck-Verdier结构的双重功能与刚性双重性相吻合。我们代数结果的主要拓扑结果是$ z(\ nathcal {c})$会产生一个Ansular functor,实际上,即使是模块化的函数,无论$ \ Mathcal {C} $是否是球形的。为了证明色带Grothendieck-Verdier结构的上述唯一性陈述,我们得出了一个七个精确的序列,该序列表征了均衡的编织类别中功能区Grothendieck-Verdier结构的空间。该序列以平衡编织类别的Müger中心平衡版本的PICARD组为特色。

We prove that the Drinfeld center $Z(\mathcal{C})$ of a pivotal finite tensor category $\mathcal{C}$ comes with the structure of a ribbon Grothendieck-Verdier category in the sense of Boyarchenko-Drinfeld. Phrased operadically, this makes $Z(\mathcal{C})$ into a cyclic algebra over the framed $E_2$-operad. The underlying object of the dualizing object is the distinguished invertible object of $\mathcal{C}$ appearing in the well-known Radford isomorphism of Etingof-Nikshych-Ostrik. Up to equivalence, this is the unique ribbon Grothendieck-Verdier structure on $Z(\mathcal{C})$ extending the canonical balanced braided structure that $Z(\mathcal{C})$ already comes equipped with. The duality functor of this ribbon Grothendieck-Verdier structure coincides with the rigid duality if and only if $\mathcal{C}$ is spherical in the sense of Douglas-Schommer-Pries-Snyder. The main topological consequence of our algebraic result is that $Z(\mathcal{C})$ gives rise to an ansular functor, in fact even a modular functor regardless of whether $\mathcal{C}$ is spherical or not. In order to prove the aforementioned uniqueness statement for the ribbon Grothendieck-Verdier structure, we derive a seven-term exact sequence characterizing the space of ribbon Grothendieck-Verdier structures on a balanced braided category. This sequence features the Picard group of the balanced version of the Müger center of the balanced braided category.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源