论文标题
从人姿势定位扫描目标以进行自主肺超声成像
Localizing Scan Targets from Human Pose for Autonomous Lung Ultrasound Imaging
论文作者
论文摘要
超声正在发展成为一种负担得起且多才多艺的医学成像解决方案。随着Covid-19的全球大流行的出现,有必要完全自动化超声成像,因为它需要长时间与患者密切接近患者的训练有素的操作员,从而增加感染风险。在这项工作中,我们研究了肺超声成像的设置,研究了扫描目标定位的重要但很少研究的问题。我们提出了一种纯粹基于视觉的数据驱动方法,该方法结合了基于学习的计算机视觉技术。我们将人类姿势估计模型与专门设计的回归模型相结合,以预测肺超声扫描目标,并部署多览立体声愿景,以增强3D目标定位的一致性。尽管相关工作主要集中在幻影实验上,但我们从30个人类受试者中收集数据进行测试。我们的方法的探针定位的精度为16.00(9.79)mm,探针取向为4.44(3.75)度,在所有扫描目标的误差阈值下,成功率高于80%。此外,我们的方法可以作为其他类型的超声模式的一般解决方案。实施代码已发布。
Ultrasound is progressing toward becoming an affordable and versatile solution to medical imaging. With the advent of COVID-19 global pandemic, there is a need to fully automate ultrasound imaging as it requires trained operators in close proximity to patients for a long period of time, therefore increasing risk of infection. In this work, we investigate the important yet seldom-studied problem of scan target localization, under the setting of lung ultrasound imaging. We propose a purely vision-based, data driven method that incorporates learning-based computer vision techniques. We combine a human pose estimation model with a specially designed regression model to predict the lung ultrasound scan targets, and deploy multiview stereo vision to enhance the consistency of 3D target localization. While related works mostly focus on phantom experiments, we collect data from 30 human subjects for testing. Our method attains an accuracy level of 16.00(9.79) mm for probe positioning and 4.44(3.75) degree for probe orientation, with a success rate above 80% under an error threshold of 25mm for all scan targets. Moreover, our approach can serve as a general solution to other types of ultrasound modalities. The code for implementation has been released.