论文标题

$ \ ell $ - 完整的子空间和代码有限双线性空间

$\ell$-Complementary Subspaces and Codes in Finite Bilinear Spaces

论文作者

Gluesing-Luerssen, Heide, Ravagnani, Alberto

论文摘要

我们考虑(对称,非脱位)双线性空间在有限的字段上,并研究其$ \ ell $ complentary子空间的属性,即,在尺寸$ \ ell $中相交的子空间。这个概念概括了完全各向同性的子空间,在编码理论的背景下,它专门介绍了自动,自dual,自dual和线性平衡偶(LCD)代码的概念。在本文中,我们专注于所有这些对象的枚举和渐近组合学,为其数字提供公式并描述其典型行为(而不是单个对象的行为)。例如,我们给出了一个封闭式公式,用于锤击指标中$ \ ell $ complementary代码的平均重量分布,这是由Pless和Sloane概括为二进制自偶代码的总重量枚举者的结果。我们的结果还表明,尽管在大型领域的相同维度的一组代码中非常稀疏,但渐向代码的行为与典型的,不一定是自相支的代码相似。特别是,我们证明,通过计算非MDS的渐近码在很大的领域上是MDS的MD,以使其生长的田间大小。

We consider (symmetric, non-degenerate) bilinear spaces over a finite field and investigate the properties of their $\ell$-complementary subspaces, i.e., the subspaces that intersect their dual in dimension $\ell$. This concept generalizes that of a totally isotropic subspace and, in the context of coding theory, specializes to the notions of self-orthogonal, self-dual and linear-complementary-dual (LCD) codes. In this paper, we focus on the enumerative and asymptotic combinatorics of all these objects, giving formulas for their numbers and describing their typical behavior (rather than the behavior of a single object). For example, we give a closed formula for the average weight distribution of an $\ell$-complementary code in the Hamming metric, generalizing a result by Pless and Sloane on the aggregate weight enumerator of binary self-dual codes. Our results also show that self-orthogonal codes, despite being very sparse in the set of codes of the same dimension over a large field, asymptotically behave quite similarly to a typical, not necessarily self-orthogonal, code. In particular, we prove that most self-orthogonal codes are MDS over a large field by computing the asymptotic proportion of the non-MDS ones for growing field size.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源