论文标题
在远程Haken-Strobl-Reineker模型中的异常扩散
Anomalous diffusion in the Long-Range Haken-Strobl-Reineker model
论文作者
论文摘要
我们分析了$ d $维晶格中激子的传播,并在存在下的驱动器中,$ \ propto $ \ propto 1/r^α$在dephasing的情况下,由广义的haken-strobl-reineker模型描述。我们表明,在强大的Dephasing(Quantum Zeno)方案中,动力学由经典的主方程来描述,用于跳远的排除过程。在此限制中,我们通过分析计算空间分布,其形状以衰减指数的临界值$α_ {\ rm cr} =(d+2)/2 $变化。激子总是异常地散布:超级延伸的运动与lévy稳定分布相关,并以$α\leqα_ {\ rm cr} $的远程代数尾巴与较长的代数尾巴相关,而对于$ a {\α>α>α>α_ {\ rm cr} $,与令人惊讶的混合级别的速度相对应的是,与长期差异相对应扩散和远程莱维飞行员。在许多外部情况下,我们证明,从域壁激子曲线开始,代数尾巴出现在任何$α$的分布中,这会影响热化:跳跃范围的时间越长,达到了更快的平衡。我们的结果与冷捕获离子,rydberg原子和超分子染料骨料的实验直接相关。它们提供了一种通过实验跳远实现排除过程的方法。
We analyze the propagation of excitons in a $d$-dimensional lattice with power-law hopping $\propto 1/r^α$ in the presence of dephasing, described by a generalized Haken-Strobl-Reineker model. We show that in the strong dephasing (quantum Zeno) regime the dynamics is described by a classical master equation for an exclusion process with long jumps. In this limit, we analytically compute the spatial distribution, whose shape changes at a critical value of the decay exponent $α_{\rm cr} = (d+2)/2$. The exciton always diffuses anomalously: a superdiffusive motion is associated to a Lévy stable distribution with long-range algebraic tails for $α\leqα_{\rm cr}$, while for $α> α_{\rm cr}$ the distribution corresponds to a surprising mixed Gaussian profile with long-range algebraic tails, leading to the coexistence of short-range diffusion and long-range Lévy-flights. In the many-exciton case, we demonstrate that, starting from a domain-wall exciton profile, algebraic tails appear in the distributions for any $α$, which affects thermalization: the longer the hopping range, the faster equilibrium is reached. Our results are directly relevant to experiments with cold trapped ions, Rydberg atoms and supramolecular dye aggregates. They provide a way to realize an exclusion process with long jumps experimentally.