论文标题
蒙特卡洛树木搜索利用黑框的作业节目安排启发式方法的绩效
Monte-Carlo Tree-Search for Leveraging Performance of Blackbox Job-Shop Scheduling Heuristics
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In manufacturing, the production is often done on out-of-the-shelf manufacturing lines, whose underlying scheduling heuristics are not known due to the intellectual property. We consider such a setting with a black-box job-shop system and an unknown scheduling heuristic that, for a given permutation of jobs, schedules the jobs for the black-box job-shop with the goal of minimizing the makespan. Here, the jobs need to enter the job-shop in the given order of the permutation, but may take different paths within the job shop, which depends on the black-box heuristic. The performance of the black-box heuristic depends on the order of the jobs, and the natural problem for the manufacturer is to find an optimum ordering of the jobs. Facing a real-world scenario as described above, we engineer the Monte-Carlo tree-search for finding a close-to-optimum ordering of jobs. To cope with a large solutions-space in planning scenarios, a hierarchical Monte-Carlo tree search (H-MCTS) is proposed based on abstraction of jobs. On synthetic and real-life problems, H-MCTS with integrated abstraction significantly outperforms pure heuristic-based techniques as well as other Monte-Carlo search variants. We furthermore show that, by modifying the evaluation metric in H-MCTS, it is possible to achieve other optimization objectives than what the scheduling heuristics are designed for -- e.g., minimizing the total completion time instead of the makespan. Our experimental observations have been also validated in real-life cases, and our H-MCTS approach has been implemented in a production plant's controller.