论文标题
部分可观测时空混沌系统的无模型预测
Interval reduction and (super)symmetry
论文作者
论文摘要
我们在具有对称性的边界条件的间隔上研究了三维量子场理论。 IR中有效2D理论的物理和对称性是本注释的主要主题。我们专注于(超级)Yang-Mills-Chern-Simons(YM-CS)理论,两端都具有Dirichlet边界条件。我们使用$ \ Mathcal {n} = 0 $和$ \ Mathcal {n} = 1 $ cases流向玻璃体型,而$ \ nathcal {n} =(0,1)$ wzw型号在2D中。然后,我们使用$ \ Mathcal {n} =(0,2)$ dirichlet边界研究3D $ \ MATHCAL {N} = 2 $ YM-CS。它流到$ \ MATHCAL {n} =(0,2)$ WZW的非紧凑版本。我们计算其具有扰动的两衍生有效作用(即指标和B场),并推测出新的非扰动效应的可能性。我们还构建了流向相似Sigma模型的2D Landau-Ginzburg模型。
We study three-dimensional quantum field theories on the interval with symmetry-preserving boundary conditions. The physics and symmetries of the effective 2D theory in the IR are the main subjects of this note. We focus on the (super-)Yang-Mills-Chern-Simons (YM-CS) theories with the Dirichlet boundary conditions on both ends. We warm up with the $\mathcal{N}=0$ and $\mathcal{N}=1$ cases flowing to the bosonic and $\mathcal{N}=(0,1)$ WZW models in 2D. Then we study the 3D $\mathcal{N}=2$ YM-CS on the interval with the $\mathcal{N}=(0,2)$ Dirichlet boundaries. It flows to a non-compact version of the $\mathcal{N}=(0,2)$ WZW. We compute its perturbatively exact two-derivative effective action (i.e., the metric and the B-field), and speculate on the possibility of novel non-perturbative effects. We also construct the 2D Landau-Ginzburg models flowing to the similar sigma models.