论文标题
在外部自动形态和CP的距离内讲综合性
Telling compositeness at a distance with outer automorphisms and CP
论文作者
论文摘要
我们研究了组的电荷 - 差异(CP)和非CP外部自动形态,以及它们下方的组表示的转化行为。我们确定在群体完全相同表示形式中转化的复合和基本状态在外部自动形态下的变化不同。这可以对仅通过其量子数来区分基础状态的复合材料,从而相对于外部自动形态,即无需明确的短距离散射实验。我们在哪些条件下讨论这种区别是明确的。我们将对称性约束(表示)空间的情况与风味空间中相同表示形式的多个副本进行清晰分开,并确定可以为复合状态执行非平凡转化的条件。在复合产品状态下方,我们还讨论了非产品代表中的复合状态。全面的示例是根据有限组$σ(72)$和$ d_8 $给出的。讨论还适用于$ \ mathrm {su}(n)$,我们在文献中仔细检查了$ \ mathrm {su}(2n)$外部自动形态,具有反对称矩阵对应于不同的外部自动形态。我们表明,具有反对称矩阵的外部自动形态转换与标准$ \ Mathbb {z} _2 $ $ \ mathrm {surm {su}(n)$的外部自动形态相关。作为一个直接含义,在$ \ mathrm {su}(n)$的外部自动形态下,复合产物状态状态没有不平凡的转换行为。
We investigate charge-parity (CP) and non-CP outer automorphism of groups and the transformation behavior of group representations under them. We identify situations where composite and elementary states that transform in exactly the same representation of the group, transform differently under outer automorphisms. This can be instrumental in discriminating composite from elementary states solely by their quantum numbers with respect to the outer automorphism, i.e. without the need for explicit short distance scattering experiments. We discuss under what conditions such a distinction is unequivocally possible. We cleanly separate the case of symmetry constrained (representation) spaces from the case of multiple copies of identical representations in flavor space, and identify conditions under which non-trivial transformation in flavor space can be enforced for composite states. Next to composite product states, we also discuss composite states in non-product representations. Comprehensive examples are given based on the finite groups $Σ(72)$ and $D_8$. The discussion also applies to $\mathrm{SU}(N)$ and we scrutinize recent claims in the literature that $\mathrm{SU}(2N)$ outer automorphism with antisymmetric matrices correspond to distinct outer automorphisms. We show that outer automorphism transformations with antisymmetric matrices are related by an inner automorphism to the standard $\mathbb{Z}_2$ outer automorphism of $\mathrm{SU}(N)$. As a direct implication, no non-trivial transformation behavior can arise for composite product states under the outer automorphism of $\mathrm{SU}(N)$.