论文标题
部分可观测时空混沌系统的无模型预测
Self-Supervised Geometry-Aware Encoder for Style-Based 3D GAN Inversion
论文作者
论文摘要
StyleGan通过图像反转和潜在编辑在2D面重建和语义编辑中取得了巨大进展。尽管已经出现了扩展到2D StyleGAN到3D面的研究,但仍缺少相应的通用3D GAN反转框架,限制了3D面部重建和语义编辑的应用。在本文中,我们研究了3D GAN倒置的具有挑战性的问题,在该问题中,预测具有单个脸部图像以忠实地恢复其3D形状和详细纹理。这个问题是不适合的:可以将无数形状和纹理的组成呈现给当前图像。此外,在全球潜在代码的能力有限的情况下,2D反转方法不能同时保留忠实的形状和纹理,同时将其应用于3D模型。为了解决这个问题,我们设计了一个有效的自我训练计划来限制反演的学习。学习是有效完成的,没有任何现实世界的2d-3d训练对,但是从3D GAN产生的代理样本。此外,除了捕获粗大形状和纹理信息的全球潜在代码外,我们还通过本地分支增强了生成网络,在该网络中,像素分配的功能被添加到忠实地重建面部细节。我们进一步考虑了一条新的管道来执行3D视图一致的编辑。广泛的实验表明,我们的方法的表现优于形状和纹理重建质量的最新反转方法。代码和数据将发布。
StyleGAN has achieved great progress in 2D face reconstruction and semantic editing via image inversion and latent editing. While studies over extending 2D StyleGAN to 3D faces have emerged, a corresponding generic 3D GAN inversion framework is still missing, limiting the applications of 3D face reconstruction and semantic editing. In this paper, we study the challenging problem of 3D GAN inversion where a latent code is predicted given a single face image to faithfully recover its 3D shapes and detailed textures. The problem is ill-posed: innumerable compositions of shape and texture could be rendered to the current image. Furthermore, with the limited capacity of a global latent code, 2D inversion methods cannot preserve faithful shape and texture at the same time when applied to 3D models. To solve this problem, we devise an effective self-training scheme to constrain the learning of inversion. The learning is done efficiently without any real-world 2D-3D training pairs but proxy samples generated from a 3D GAN. In addition, apart from a global latent code that captures the coarse shape and texture information, we augment the generation network with a local branch, where pixel-aligned features are added to faithfully reconstruct face details. We further consider a new pipeline to perform 3D view-consistent editing. Extensive experiments show that our method outperforms state-of-the-art inversion methods in both shape and texture reconstruction quality. Code and data will be released.