论文标题

偶极韦尔半法

Dipolar Weyl semimetals

论文作者

Tyner, Alexander C., Sur, Shouvik

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In time-reversal symmetry-broken Weyl semimetals, Weyl points act as monopoles and antimonopoles of the Berry curvature, with a monopole-antimonopole pair producing a net zero Berry flux. The two-dimensional (2D) planes that separate a monopole-antimonopole pair of Weyl points carry quantized Berry flux. In this work, we introduce a class of symmetry-protected Weyl semimetals which host monopole-antimonopole pairs of Weyl points that generate a quantized dipolar Berry flux. Consequently, topologically distinct 2D planes coexist in the Brillouin zone, carrying either quantized monopolar or dipolar flux. We construct a topological invariant -- the staggered Chern number -- to measure the quantized dipolar flux and employ it to topologically distinguish between various Weyl points. Finally, through a minimal two-band model, we investigate physical signatures of bulk topology, including surface Fermi arcs, zero-energy hinge states, and response to insertion of a $π$-flux vortex.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源