论文标题
随机递归超图
Random Recursive Hypergraphs
论文作者
论文摘要
通过将新顶点连接到随机选择的现有边缘来形成的一个顶点和边缘,从每个步骤中添加一个顶点和边缘来生长随机递归超图。该模型是无参数的,新出现的超图的几个特征通过谐波数量,伯努利数字,欧拉数和第一种类型的斯特林数字允许整洁表达式。随机递归超图的自然变形产生了不断增长的随机超图的迷人模型。
Random recursive hypergraphs grow by adding, at each step, a vertex and an edge formed by joining the new vertex to a randomly chosen existing edge. The model is parameter-free, and several characteristics of emerging hypergraphs admit neat expressions via harmonic numbers, Bernoulli numbers, Eulerian numbers, and Stirling numbers of the first kind. Natural deformations of random recursive hypergraphs give rise to fascinating models of growing random hypergraphs.