论文标题
外周自动晶体UNITAR完全正面地图
Peripherally automorphic unital completely positive maps
论文作者
论文摘要
我们在有限尺寸$ c^*$ - 代数上识别并表征Unital完全正(UCP)图,choi-effros产品将其扩展到外围特征向量与原始产品匹配的空间。我们将有限维度中的一般UCP图分解为持久和瞬态部分。结果表明,在有限尺寸$ c^*$ - 单位圆中包含光谱的代数上的UCP地图为$ \ ast $ -automorphisms。
We identify and characterize unital completely positive (UCP) maps on finite dimensional $C^*$-algebras for which the Choi-Effros product extended to the space generated by peripheral eigenvectors matches with the original product. We analyze a decomposition of general UCP maps in finite dimensions into persistent and transient parts. It is shown that UCP maps on finite dimensional $C^*$-algebras with spectrum contained in the unit circle are $\ast$-automorphisms.