论文标题

强大的神经粒子鉴定模型

Robust Neural Particle Identification Models

论文作者

Temirkhanov, Aziz, Ryzhikov, Artem, Derkach, Denis, Hushchyn, Mikhail, Kazeev, Nikita, Mokhnenko, Sergei

论文摘要

大型强子对撞机实验处理的数据量通常需要基于机器学习算法的复杂选择规则。这些方法的缺点之一是它们对训练样本中的偏见的深刻敏感性。在粒子识别(PID)的情况下,由于输入运动学分布的差异,训练数据集中某些衰减的效率可能会降解。在本次演讲中,我们提出了一种基于常见特定分解的方法,该方法考虑了单个衰减和训练数据中可能的错误,通过解开输入功能集的常见和衰减的特定组件。我们表明,所提出的方法降低了LHCB检测器中重建的衰减的PID算法的效率降解速率。

The volume of data processed by the Large Hadron Collider experiments demands sophisticated selection rules typically based on machine learning algorithms. One of the shortcomings of these approaches is their profound sensitivity to the biases in training samples. In the case of particle identification (PID), this might lead to degradation of the efficiency for some decays not present in the training dataset due to differences in input kinematic distributions. In this talk, we propose a method based on the Common Specific Decomposition that takes into account individual decays and possible misshapes in the training data by disentangling common and decay specific components of the input feature set. We show that the proposed approach reduces the rate of efficiency degradation for the PID algorithms for the decays reconstructed in the LHCb detector.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源