论文标题

NL4OPT竞赛子任务1:命名实体识别的整体培训语言模型

VTCC-NLP at NL4Opt competition subtask 1: An Ensemble Pre-trained language models for Named Entity Recognition

论文作者

Doan, Xuan-Dung

论文摘要

我们提出了三种预先训练的语言模型(XLM-R,Bart和Deberta-V3),作为命名实体识别的上下文化嵌入的能力。我们的模型在测试集上取得了92.9%的F1得分,在NL4OPT竞赛子任务1中排名第五。

We propose a combined three pre-trained language models (XLM-R, BART, and DeBERTa-V3) as an empower of contextualized embedding for named entity recognition. Our model achieves a 92.9% F1 score on the test set and ranks 5th on the leaderboard at NL4Opt competition subtask 1.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源