论文标题
零模型何时,为什么会导致纠缠熵的差异?
When and why do zero-modes cause a divergence in the entanglement entropy?
论文作者
论文摘要
我们检查了基础纠缠熵的差异与在一维玻色链和费米子链的背景下的基础纠缠熵与新兴的零模型之间的相关性。从一对耦合的骨体自由度开始,我们表明零模式是必要的,但不足以纠缠熵差异。然后,我们列出了识别分歧的足够条件。接下来,我们将分析扩展到骨髓链,在那里我们证明,纠缠汉密尔顿的零模式为独立于纠缠汉密尔顿的分歧提供了签名。然后,我们将结果推广到一维费米子晶格中,用于交错的fermions链,这是Dirac字段的离散版本。我们发现,遗传链详细介绍的方法具有典型类似物,并通过对费米子链中的纠缠的数值研究进行了跟进。最后,我们根据分解代数定理讨论结果。
We examine the correlations between divergences in ground state entanglement entropy and emergent zero-modes of the underlying Hamiltonian in the context of one-dimensional Bosonic and Fermionic chains. Starting with a pair of coupled Bosonic degrees of freedom, we show that zero modes are necessary, but not sufficient for entanglement entropy divergences. We then list sufficient conditions that identify divergences. Next, we extend our analysis to Bosonic chains, where we demonstrate that zero modes of the entanglement Hamiltonian provide a signature for divergences independent of the entanglement Hamiltonian. We then generalize our results to one-dimensional Fermionic lattices for a chain of staggered Fermions which is a discretized version of the Dirac field. We find that the methods detailed for Bosonic chains have Fermionic analogs and follow this up with a numerical study of the entanglement in the Fermionic chain. Finally, we discuss our results in light of the factorization algebra theorem.