论文标题

基于高斯方法的Runge-Kutta卷积正交正交

Runge-Kutta convolution quadrature based on Gauss methods

论文作者

Banjai, Lehel, Ferrari, Matteo

论文摘要

根据应用于双曲线操作员的高斯方法,对runge-kutta卷积正交正交进行了错误分析。融合顺序在很大程度上取决于阶段数量的奇偶校验,这是奇数案例比偶数案例更有利的情况。此外,对于特定情况,当使用相同数量的阶段时,收敛顺序高于Radau IIA或Lobatto IIIC方法。我们进一步研究了一种瞬时声学散射的应用,在某些散射障碍物中,有利的情况发生在外部迪里奇(Dirichlet to-Neumann)地图的重要情况下。数值实验和比较显示了该方法的性能。

An error analysis of Runge-Kutta convolution quadrature based on Gauss methods applied to hyperbolic operators is given. The order of convergence relies heavily on the parity of the number of stages, a more favourable situation arising for the odd cases than the even ones. Moreover, for particular situations the order of convergence is higher than for Radau IIA or Lobatto IIIC methods when using the same number of stages. We further investigate an application to transient acoustic scattering where, for certain scattering obstacles, the favourable situation occurs in the important case of the exterior Dirichlet-to-Neumann map. Numerical experiments and comparisons show the performance of the method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源