论文标题

CAT(0)较高等级II的空间

CAT(0) spaces of higher rank II

论文作者

Stadler, Stephan

论文摘要

这属于鲍尔曼(Ballmann)高级僵化猜想的一系列论文。我们证明了以下内容。令$ x $为具有几何组动作的猫(0)空间。假设$ x $中的每个大地测量都在$ n $ flat中,$ n \ geq 2 $。如果$ x $包含一个定期的$ n $ -flat,它不绑定平面$(n+1)$ - 半空间,则$ x $是Riemannian对称空间,欧几里得建筑物或非琐碎的分裂作为公制产品。这概括了具有几何群体作用的Hadamard歧管的较高等级刚度定理。

This belongs to a series of papers motivated by Ballmann's Higher Rank Rigidity Conjecture. We prove the following. Let $X$ be a CAT(0) space with a geometric group action. Suppose that every geodesic in $X$ lies in an $n$-flat, $n\geq 2$. If $X$ contains a periodic $n$-flat which does not bound a flat $(n+1)$-half-space, then $X$ is a Riemannian symmetric space, a Euclidean building or non-trivially splits as a metric product. This generalizes the Higher Rank Rigidity Theorem for Hadamard manifolds with geometric group actions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源