论文标题

关于Quaternionic Shimura曲线的P-ADIC均匀化

On the p-adic uniformization of quaternionic Shimura curves

论文作者

Boutot, Jean-Francois, Zink, Thomas

论文摘要

令D为完全真实的数字字段F为四个划分代数,该字段恰好在一个无限的位置分开。我们假设有一个d的地方,d不会分裂。然后,相关的Shimura曲线具有P-Adic上半平面的Cherednik统一。我们定义了Shimura曲线不可或缺的模型。我们证明了模型在正式频谱上完成模型的统一定理。

Let D be a quaternion division algebra over a totally real number field F which splits exactly at one infinite place. We assume that there is a p-adic place where D doesn't split. Then the associated Shimura curve has a Cherednik unifomization by the p-adic upper half plane. We define an integral model of the Shimura curve an over the integers O of this p-adic place. We prove an uniformization theorem for the completion of the model over the formal spectrum Spf O.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源