论文标题
平面重力波脉冲的记忆效应
Memory Effect of Plane Gravitational Wave Pulses
论文作者
论文摘要
引力波脉冲在穿过时空时会带来自由颗粒之间的相对分离的变化。这种“记忆效应”是引力波的签名之一。在本文中,我们考虑了一些可行的脉冲配置文件,这些配置文件尚未由其他人分析(例如$ u^{ - 4} $,$ u^{ - 2} $,$ \ frac {c} {(u^2 + au + au + au + b)^2} $),并检查这些波脉冲在PP-Wave Spac Spac Spacemete中产生的记忆效应。我们选择在Brinkmann坐标中工作以求解地球方程。从相应的分析溶液的图中,我们在脉搏消失后每种情况下都观察到一对测量学之间的非零分离。位移记忆效应要么单调增加或减小,而初始上升或落下后速度内存效应达到饱和。
A gravitational wave pulse, while passing through spacetime, brings about a change in the relative separation between free particles. This `memory effect' serves as one of the signatures of gravitational waves. In this paper, we consider some viable pulse profiles which are not yet analyzed by others (e.g., $u^{-4}$, $u^{-2}$, $ \frac{c}{(u^2 + au +b)^2} $), and examine the memory effect produced by these wave pulses in pp-wave spacetime. We choose to work in the Brinkmann coordinates to solve the geodesic equations. From the plots of the corresponding analytical solutions, we observe a non-zero separation between a pair of geodesics in each case, after the pulse dies out. The displacement memory effect either increases or decreases monotonically, whereas the velocity memory effect reaches saturation after an initial rise or drop.