论文标题
应力多晶薄膜中的新兴晶界阶段
Emergent grain boundary phases in stressed polycrystalline thin films
论文作者
论文摘要
晶界(GB)微结构会影响,并受到多晶薄膜合成过程中残留应力的发展的影响。最近的研究表明,在GB能量中,首选的生长方向与基于GB能量的局部尖端的旋转之间的挫败感会导致内部应力位于山谷周围纳米镜面层中的内部应力,并在出现边界(EGB)处形成的山谷和山脊。使用连续框架的组合,数值分析和双原子$ \ langle 111 \ rangle $铜膜的全原子模拟,我们表明egbs响应于外部菌株而调整其表面形态和旋转范围。压缩有利于旋转对EGB山谷的低能量GB相(肤色)的旋转和生长,而张力则有利于EGB脊的过渡,这反映了应力诱导的质量外排/流向,从而改变了界面和变形能之间的能量平衡。分子动力学对紧张和生长的双晶膜的分子动力学模拟表明,EGB相变与表面三重连接处的岛形成耦合,从而在EGB相和表面阶梯流之间提供了直接的联系。 EGB结构,形态和力学之间的相互作用是对膜增长过程中应力和形态演变的预测理解的关键成分,对多种表面现象的多功能响应具有广泛的影响,在表面介导的形式介导的形式介导的形式不适,表面上的互换,表面构造,表面型,外表型,外表,表面型,构成态度,构成型,外表,构成型,外表,表面型,构成态度。
The grain boundary (GB) microstructure influences and is influenced by the development of residual stresses during synthesis of polycrystalline thin films. Recent studies have shown that the frustration between the preferred growth direction and rotations of abutting crystals to local cusps in GB energies leads to internal stresses localized within nanoscopic surface layers around the valleys and ridges that form at emergent boundaries (eGBs). Using a combination of continuum frameworks, numerical analyses and all-atom simulations of bicrystal $\langle 111\rangle$ copper films, we show that eGBs tune their surface morphology and rotation extent in response to external strains. Compression favors rotation to and growth of low energy GB phases (complexions) at eGB valleys while tension favors the transitions at eGB ridges, a reflection of the stress-induced mass efflux/influx that changes the energetic balance between interfacial and deformation energies. Molecular dynamics simulations of strained and growing bicrystal films reveal that the eGB phase transition is coupled to island formation at the surface triple junctions, providing a direct link between eGB phases and surface step flow. The interplay between eGB structure, morphology and mechanics emerges as a crucial ingredient for predictive understanding of stress and morphological evolution during film growth, with broad implications for multifunctional response of polycrystalline surfaces in a diverse range of surface phenomena such as surface mediated deformation, interfacial embrittlement, thermal grooving, stress corrosion, surface catalysis and topological conduction.