论文标题

2D经典海森堡模型的渗透和矢量值GFF的出口集

Percolation for 2D classical Heisenberg model and exit sets of vector valued GFF

论文作者

Aru, Juhan, Garban, Christophe, Sepúlveda, Avelio

论文摘要

我们在本文中的动机是双重的。首先,我们研究了一类探索集的几何形状,称为退出集,它们与2D矢量值GFF:$ ϕ:z^2 \ to r^n,n \ geq 1 $相关。我们证明,有些令人惊讶的是,这些集合是A.S.退化为$ n \ geq 2 $,而当$ n = 1 $时,它们被推测为宏观和分形。 当$ n \ geq 2 $时,此分析可以理解$ \ {\ | ϕ(x)\ |,x \ in z^2 \} $的级别集的渗透属性随机电导给$ z^2 $的随机导电给出的旋转$ o(n)$。使用$ n $ - 矢量值GFF的出口集,我们在极限$β\ to \ infty $中获得了这种随机疾病的局部和几何描述。这使我们能够重新审视Patrascioiu和Seiler([PS92,PS93,PS02])的一系列著名作品,该作品反对Polyakov的预测,即当$ n \ geq 2 $([POL75])时,旋转$ O(n+1)$模型在所有温度下都是巨大的。我们使他们的论点的一部分是严格的,更重要的是,我们提供以下反例:我们建立了(任意)高电导率的千古环境,该环境(任意)小和断开的低电导率区域,尽管高电导率占优势,但$ XY $ $模型仍然很大。 我们非常关注,我们证明,在高$β$的情况下,经典海森堡模型的横向波动由$ n = 2 $ vectorial GFF给出。这在[POL75]中是隐含的,但我们在这里给出了第一个(非平凡的)严格证明。同样,与最近的工作[DF22]无关,我们表明旋转$ O(n)$模型的两点相关功能是根据任何$ n \ geq 1 $的电缆图中的某些渗透事件给出的。

Our motivation in this paper is twofold. First, we study the geometry of a class of exploration sets, called exit sets, which are naturally associated with a 2D vector-valued GFF : $ϕ: Z^2 \to R^N, N\geq 1$. We prove that, somewhat surprisingly, these sets are a.s. degenerate as long as $N\geq 2$, while they are conjectured to be macroscopic and fractal when $N=1$. This analysis allows us, when $N\geq 2$, to understand the percolation properties of the level sets of $\{\|ϕ(x)\|, x\in Z^2\}$ and leads us to our second main motivation in this work: if one projects a spin $O(N+1)$ model (classical Heisenberg model is $N=2$) down to a spin $O(N)$ model, we end up with a spin $O(N)$ in a quenched disorder given by random conductances on $Z^2$. Using the exit sets of the $N$-vector-valued GFF, we obtain a local and geometric description of this random disorder in the limit $β\to \infty$. This allows us to revisit a series of celebrated works by Patrascioiu and Seiler ([PS92, PS93, PS02]) which argued against Polyakov's prediction that spin $O(N+1)$ model is massive at all temperatures when $N\geq 2$ ([Pol75]). We make part of their arguments rigorous and more importantly we provide the following counter-example: we build ergodic environments of (arbitrary) high conductances with (arbitrary) small and disconnected regions of low conductances in which, despite the predominance of high conductances, the $XY$ model remains massive. Of independent interest, we prove that at high $β$, the transverse fluctuations of a classical Heisenberg model are given by a $N=2$ vectorial GFF. This is implicit in [Pol75] but we give here the first (non-trivial) rigorous proof. Also, independently of the recent work [DF22], we show that two-point correlation functions of the spin $O(N)$ model are given in terms of certain percolation events in the cable graph for any $N\geq 1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源