论文标题

schr {Ö} dinger操作员在能量空间中的界限

Boundedness of Schr{ö}dinger operator in energy space

论文作者

Carron, Gilles, Lansade, Maël

论文摘要

On a complete weighted Riemannian manifold $(M^n,g,μ)$ satisfying the doubling condition and the Poincar{é} inequalities, we characterize the class of function $V$ such that the Schr{ö}dinger operator $Δ-V$ maps the homogeneous Sobolev space $W_o^{1,2} (M)$ to its dual space.在欧几里得空间上,这个结果归功于马兹亚和韦尔比茨基。为了证明我们的结果,我们研究了霍奇投影仪的加权$ l^2 $结合。

On a complete weighted Riemannian manifold $(M^n,g,μ)$ satisfying the doubling condition and the Poincar{é} inequalities, we characterize the class of function $V$ such that the Schr{ö}dinger operator $Δ-V$ maps the homogeneous Sobolev space $W_o^{1,2} (M)$ to its dual space. On Euclidean space, this result is due to Maz'ya and Verbitsky. In the proof of our result, we investigate the weighted $L^2$-boundedness of the Hodge projector.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源