论文标题

一种快速准确的草图方法,用于估计用户相似性与轨迹数据

A fast and Accurate Sketch Method for Estimating User Similarities over Trajectory Data

论文作者

Wang, Hua

论文摘要

在复杂的城市环境中,由于GNSS定位信号的不可避免的中断和车辆驾驶过程中错误的积累,收集的车辆轨迹数据可能是不准确和不完整的。提出了基于双向RNN深网的加权轨迹重建算法。 GNSS/OBD轨迹采集设备用于收集车辆轨迹信息,多源数据融合用于实现双向加权轨迹重建。同时,将神经算术逻辑单元(NALU)引入轨迹重建模型中,以增强深网的外推能力并确保轨迹预测的准确性,从而在处理复杂的城市公路区域时可以提高轨迹算法在轨迹构造中的鲁棒性。选择了实际的城市道路部分进行测试实验,并使用现有方法进行了比较分析。通过均方根误差(RMSE,根平方误差),并使用Google Earth可视化重建的轨迹,实验结果证明了所提出算法的有效性和可靠性。

In a complex urban environment, due to the unavoidable interruption of GNSS positioning signals and the accumulation of errors during vehicle driving, the collected vehicle trajectory data is likely to be inaccurate and incomplete. A weighted trajectory reconstruction algorithm based on a bidirectional RNN deep network is proposed. GNSS/OBD trajectory acquisition equipment is used to collect vehicle trajectory information, and multi-source data fusion is used to realize bidirectional weighted trajectory reconstruction. At the same time, the neural arithmetic logic unit (NALU) is introduced into the trajectory reconstruction model to strengthen the extrapolation ability of the deep network and ensure the accuracy of trajectory prediction, which can improve the robustness of the algorithm in trajectory reconstruction when dealing with complex urban road sections. The actual urban road section was selected for testing experiments, and a comparative analysis was carried out with existing methods. Through root mean square error (RMSE, root-mean-square error) and using Google Earth to visualize the reconstructed trajectory, the experimental results demonstrate the effectiveness and reliability of the proposed algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源