论文标题
无线联合边缘学习的宽带数字无线计算
Broadband Digital Over-the-Air Computation for Wireless Federated Edge Learning
论文作者
论文摘要
本文介绍了第一个正交频划分多路复用(OFDM)的数字数字电流计算(AIRCOMP)系统,用于无线联合边缘学习,其中多个边缘设备使用非正交的OFDM Subcarriers同时传输模型数据,以及直接从叠加型信号的Edge Server Contractes数据。现有的模拟AIRCOMP系统通常通过通道预编码进行完美的相位对准,并利用未编码的模拟传输进行模型聚集。相比之下,我们的数字AIRCOMP系统利用数字调制和频道代码来克服相位异步,从而实现了相位 - 同步多用户OFDM系统的准确模型聚合。为了实现数字AIRCOMP系统,我们开发了一个中型访问控制(MAC)协议,该协议允许使用非正交的OFDM子载波从不同用户同时传输,并提出了针对卷积和LDPC代码量身定制的联合通道解码和聚合解码器。为了验证所提出的系统设计,我们在USRP软件定义的无线电平台上构建了数字AIRCOMP原型,并演示了最多四个用户的实时LDPC编码的AirComp系统。与SNR相比,痕量驱动的模拟结果表明:1)模拟AirComp对实用的多用户系统中的相位异步敏感,并且即使在高SNRS下,测试准确性性能也无法改善; 2)我们的数字AIRCOMP系统在所有SNR上都胜过两个模拟AIRCOMP系统,并且当SNR $ \ geq $ 6 dB的两种用户LDPC编码的AIRCOMP均表现出最佳性能,这表明了数字AIRCOMP在相位 - 相关的多用量用户ofdm Systems中的优势。
This paper presents the first orthogonal frequency-division multiplexing(OFDM)-based digital over-the-air computation (AirComp) system for wireless federated edge learning, where multiple edge devices transmit model data simultaneously using non-orthogonal OFDM subcarriers, and the edge server aggregates data directly from the superimposed signal. Existing analog AirComp systems often assume perfect phase alignment via channel precoding and utilize uncoded analog transmission for model aggregation. In contrast, our digital AirComp system leverages digital modulation and channel codes to overcome phase asynchrony, thereby achieving accurate model aggregation for phase-asynchronous multi-user OFDM systems. To realize a digital AirComp system, we develop a medium access control (MAC) protocol that allows simultaneous transmissions from different users using non-orthogonal OFDM subcarriers, and put forth joint channel decoding and aggregation decoders tailored for convolutional and LDPC codes. To verify the proposed system design, we build a digital AirComp prototype on the USRP software-defined radio platform, and demonstrate a real-time LDPC-coded AirComp system with up to four users. Trace-driven simulation results on test accuracy versus SNR show that: 1) analog AirComp is sensitive to phase asynchrony in practical multi-user OFDM systems, and the test accuracy performance fails to improve even at high SNRs; 2) our digital AirComp system outperforms two analog AirComp systems at all SNRs, and approaches the optimal performance when SNR $\geq$ 6 dB for two-user LDPC-coded AirComp, demonstrating the advantage of digital AirComp in phase-asynchronous multi-user OFDM systems.