论文标题

使用差别隐私对云边缘协作的保密性推断对安全性推断

Privacy-preserving Security Inference Towards Cloud-Edge Collaborative Using Differential Privacy

论文作者

Wang, Yulong, Chen, Xingshu, Wang, Qixu

论文摘要

Cloud-Edge协作推理方法将深层神经网络(DNN)分为两个部分,它们在资源受限的边缘设备和云服务器上进行协作,旨在最大程度地减少推理延迟并保护数据隐私。但是,即使来自Edge设备的原始输入数据并未直接暴露于云中,针对协作推断的最新攻击仍然能够从暴露的本地模型的中间输出中重建原始的私人数据,从而引入了严重的隐私风险。在本文中,提出了针对云边缘协作的安全隐私推理框架,称为CIS,该框架称为CIS,该框架根据动态变化的网络带宽来支持对网络进行自适应分区,并完全释放Edge设备的计算能力。为了减轻私人扰动引入的影响,CIS提供了一种通过在中间层中添加精制噪声来实现差异隐私保护的方法,这些噪声映射映射到云中。同时,在给定的总隐私预算的情况下,预算是由不同卷积过滤器生成的特征图等级的大小合理分配的,这使得云对扰动数据的推断有效,从而有效地权衡了隐私和可用性之间的相互矛盾的问题。最后,我们构建了一个真正的云边缘协作推理计算方案,以验证推理潜伏期和模型分配在资源受限的边缘设备上的有效性。此外,最先进的云边缘协作重建攻击用于评估CIS提供的端到端隐私保护机制的实际可用性。

Cloud-edge collaborative inference approach splits deep neural networks (DNNs) into two parts that run collaboratively on resource-constrained edge devices and cloud servers, aiming at minimizing inference latency and protecting data privacy. However, even if the raw input data from edge devices is not directly exposed to the cloud, state-of-the-art attacks targeting collaborative inference are still able to reconstruct the raw private data from the intermediate outputs of the exposed local models, introducing serious privacy risks. In this paper, a secure privacy inference framework for cloud-edge collaboration is proposed, termed CIS, which supports adaptively partitioning the network according to the dynamically changing network bandwidth and fully releases the computational power of edge devices. To mitigate the influence introduced by private perturbation, CIS provides a way to achieve differential privacy protection by adding refined noise to the intermediate layer feature maps offloaded to the cloud. Meanwhile, with a given total privacy budget, the budget is reasonably allocated by the size of the feature graph rank generated by different convolution filters, which makes the inference in the cloud robust to the perturbed data, thus effectively trade-off the conflicting problem between privacy and availability. Finally, we construct a real cloud-edge collaborative inference computing scenario to verify the effectiveness of inference latency and model partitioning on resource-constrained edge devices. Furthermore, the state-of-the-art cloud-edge collaborative reconstruction attack is used to evaluate the practical availability of the end-to-end privacy protection mechanism provided by CIS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源