论文标题

异常转运中的非局部线性响应

Non-local linear response in anomalous transport

论文作者

Kundu, Anupam

论文摘要

在低维经典系统中观察到的异常热传输与系统中保守场的时空相关性的超扩散扩散有关。这导致在非平衡稳态下的热电流和局部温度梯度之间的非本地线性响应关系。这种关系提供了傅立叶的传热定律的概括,其特征在于非本地核操作员,该核心操作员与描述超扩散的分数操作员有关。核本质上是成比例的,在适当的流体动力缩放限制下,与平衡中局部电流的时空相关性的时间积分。在有限尺寸系统中,无限持续时间在不同位置在不同位置的微观电流相关的时间与位置无关。另一方面,内核操作员是空间依赖性的。我们证明,这种明显的难题的分辨率通过将大型系统尺寸和大整合时间持续时间的限制的适当组合结合在一起而出现。我们的研究表明,即使是(开放)与储层连接的(开放)系统,以适当的方式采取限制的重要性。特别是我们揭示了如何从微观电流 - 电流相关性的仿真数据中提取内核操作员。对于表现出异常运输的两个模型系统,我们提供了内核操作员的直接和详细的数值验证。

Anomalous heat transport observed in low dimensional classical systems is associated to super-diffusive spreading of space-time correlation of the conserved fields in the system. This leads to non-local linear response relation between the heat current and the local temperature gradient in non-equilibrium steady state. This relation provides a generalisation of Fourier's law of heat transfer and is characterised by a non-local kernel operator which is related to fractional operators describing super-diffusion. The kernel is essentially proportional, in appropriate hydrodynamic scaling limit, to the time integral of the space-time correlations of local currents in equilibrium. In finite size systems, the time integral of correlation of microscopic currents at different locations over infinite duration is independent of the locations. On the other hand the kernel operator is space-dependent. We demonstrate that the resolution of this apparent puzzle appears through taking appropriate combination of limits of large system size and large integration time duration. Our study shows the importance of taking the limits in proper way even for (open) systems connected to reservoirs. In particular we reveal how to extract the kernel operator from simulation data of microscopic current-current correlation. For two model systems exhibiting anomalous transport, we provide direct and detailed numerical verification of the kernel operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源