论文标题
Janowski凸功能的Schwarzian规范估计
The Schwarzian norm estimates for Janowski convex functions
论文作者
论文摘要
对于$ -1 \ leq b <a \ leq 1 $,让$ \ mathcal {c}(a,a,b)$表示在单位盘$ \ mathbb {d}中定义的标准化的janowski convex函数的类别$ 1+zf''(z)/f'(z)\ prec(1+az)/(1+bz)$。在本文中,我们确定了Schwarzian Narm的尖锐估计,用于类$ \ Mathcal {C}(a,b)$中的功能。 Dieudonné的引理在有限函数的点上给出了衍生物的确切区域,在这项研究中起着关键作用,我们还使用这种引理来通过一种新方法来构建极端功能。
For $-1\leq B<A\leq 1$, let $\mathcal{C}(A,B)$ denote the class of normalized Janowski convex functions defined in the unit disk $\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}$ that satisfy the subordination relation $1+zf''(z)/f'(z)\prec (1+Az)/(1+Bz)$. In the present article, we determine the sharp estimate of the Schwarzian norm for functions in the class $\mathcal{C}(A,B)$. The Dieudonné's lemma which gives the exact region of variability for derivatives at a point of bounded functions, plays the key role in this study, and we also use this lemma to construct the extremal functions for the sharpness by a new method.