论文标题
在Diophantine方程上$ b_ {n_ {1}}+b_ {n_ {2}}} = 2^{a_ {1}}}+2^{a_ {2}}}+2^{a_ {a_ {3}}} $
On the Diophantine equation $B_{n_{1}}+B_{n_{2}}=2^{a_{1}}+2^{a_{2}}+2^{a_{3}}$
论文作者
论文摘要
在这项研究中,我们找到了二芬太丁方程的所有解决方案$ b_ {n_ {n_ {1}}+b_ {n_ {2}} = 2^{a_ {1}}}}+2^{a_ {2}}} $(n_ {1},n_ {2},a_ {1},a_ {2},a_ {3}),其中$ b_ {n} $表示$ n $ th $ th平衡号码。
In this study we find all solutions of the Diophantine equation $B_{n_{1}}+B_{n_{2}}=2^{a_{1}}+2^{a_{2}}+2^{a_{3}}$ in positive integer variables $(n_{1},n_{2},a_{1},a_{2},a_{3}),$ where $B_{n}$ denotes the $n$-th balancing number.