论文标题

对称量子传感器上有限驱动量子误差校正

Finite-round quantum error correction on symmetric quantum sensors

论文作者

Ouyang, Yingkai, Brennen, Gavin K.

论文摘要

海森堡极限对标准量子极限进行了二次改进,这是量子传感器比经典方法提供的最大量子优势。但是,由于不可避免地存在噪声破裂的量子传感器,因此该极限仍然难以捉摸。也就是说,如果无限的量子误差校正纠正了量子传感器信号的任何部分,则无需结果声称无法超过标准量子限制。我们通过使用最佳有限数量的量子误差校正和信号恢复的自适应过程来辅助这一无需结果,从而使我们的量子场传感协议的精度也可以接近Heisenberg限制,尽管有线性的删除率,但我们的量子场传感协议的精度也可以接近Heisenberg限制。我们的协议基于对称子空间内的量子误差校正代码,该量子空间中的量子校正代码使用量子控制技术接收近期实现。

The Heisenberg limit provides a quadratic improvement over the standard quantum limit, and is the maximum quantum advantage that quantum sensors could provide over classical methods. This limit remains elusive, however, because of the inevitable presence of noise decohering quantum sensors. Namely, if infinite rounds of quantum error correction corrects any part of a quantum sensor's signal, a no-go result purports that the standard quantum limit scaling can not be exceeded. We side-step this no-go result by using an optimal finite number of rounds of quantum error correction and an adaptive procedure of signal recovery, such that even if part of the signal is corrected away, our quantum field sensing protocol's precision can approach the Heisenberg limit despite a linear rate of deletion errors. Our protocol is based on quantum error correction codes within the symmetric subspace, which admit near-term implementations using quantum control techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源