论文标题

朝向高温全息超导体

Towards high temperature holographic superconductors

论文作者

Mohammadi, Mahya, Sheykhi, Ahmad

论文摘要

我们探索了一个全息超导体模型,其中实际标量场无限制地耦合到量规场。我们考虑几种类型的非最小耦合函数H($ψ$),包括指数,双曲线(COSH),幂律和分数形式。我们研究了非最小耦合参数$α$对冷凝,临界温度和电导率的影响。我们可以将结果分为两组。在第一组中,对于$α$的较大值,导体/超导相变的发生易于发生,而在第二组中,非微耦合的效果更强,使标量头发的形成更加困难。尽管电导率的真实和虚构部分被不同形式的H($ψ$)留下了深刻的印象,但它们遵循一些普遍的行为,例如通过低频制度通过Kramers-Kronig关系相互连接或在低温下的间隙频率出现。我们找到了非最小耦合函数的最佳形式形式,它为我们提供了在广泛的非最小耦合常数和温度范围内的更好信息。选择最佳的H($ψ$),我们为全息指导器/超导相变的解决方案构建了一个解决方案,以发现当仪表和标量场是非最小耦合的仪表和标量场时的高标准违规效果。我们发现,对于高标准违规$θ$和非微耦合常数$α$的较高影响,临界温度会升高。通过增加这两个参数,我们获得了较低的冷凝值,这意味着导体/超导相变会更容易获得。此外,我们了解到超标度违规会影响全息超导体的电导率$σ$,并改变了间隙频率的预期关系。观察到一些普遍的行为,例如无限直流电导率。

We explore a holographic superconductor model in which a real scalar field is non-minimally coupled to a gauge field. We consider several types of the non-minimal coupling function h($ψ$) including exponential, hyperbolic (cosh), power-law and fractional forms. We investigate the influences of the non-minimal coupling parameter $α$ on condensation, critical temperature and conductivity. We can categorize our results in two groups. In the first group, conductor/superconductor phase transition is easier to occur for larger values of $α$, while in the second group stronger effects of the non-minimal coupling makes the formation of scalar hair harder. Although the real and imaginary parts of conductivity are impressed by different forms of h($ψ$), they follow some universal behaviors such as connecting with each other through Kramers-Kronig relation in low frequency regime or the appearance of gap frequency at low temperatures. We find the best form of forms of non-minimal coupling function that gives us better information in wide range of non-minimal coupling constant and temperature. Choosing the best form of h($ψ$), we construct a family of solutions for holographic conductor/superconductor phase transitions to discover the effect of the hyperscaling violation when the gauge and scalar fields are non-minimally coupled. we find that the critical temperature increases for higher effects of hyperscaling violation $θ$ and non-minimal coupling constant $α$. By increasing these two parameters, we obtain lower values of condensation which means that conductor/superconductor phase transition will acquire easier. Furthermore, we understand that the hyperscaling violation affects the conductivity $σ$ of the holographic superconductors and changes the expected relation in the gap frequency. Some universal behaviors like infinite DC conductivity are observed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源