论文标题
在新脆弱的行人数据集上比较深对象探测器
Comparison Of Deep Object Detectors On A New Vulnerable Pedestrian Dataset
论文作者
论文摘要
行人安全是自动驾驶的主要问题。当今行人数据集中脆弱组的代表性不足表明,迫切需要脆弱的道路用户数据集。为了帮助培训全面的模型并随后推动研究以提高脆弱的行人身份认同的准确性,我们首先在本文中引入了一个新的数据集,用于脆弱的行人检测:BG脆弱的行人(BGVP)数据集。该数据集包括四个类别,即没有残疾的儿童,没有残疾的老年人,有残疾和不可能。该数据集由从公共领域收集的图像和手动宣布的边界框组成。此外,在拟议的数据集上,我们已经训练并测试了五个经典或最先进的对象检测模型,即Yolov4,Yolov5,Yolov5,Yolox,更快的R-CNN和EfficityDet。我们的结果表明,Yolox和Yolov4在我们的数据集中表现出色,Yolov4得分为0.7999,而Yolox在MAP 0.5公表示的情况下得分为0.7779,而Yolox在MAP 0.5:0.95:0.95公倍上优于MAP上的Yolov4。一般而言,所有五个探测器都很好地预测了残疾人的阶级,并且在没有残疾类别的老年人中表现不佳。 YoLox始终优于地图上的所有其他检测器(0.5:0.95),每个级别公制的儿童分别获得了残疾儿童,无残疾,不可证明和残疾,获得0.5644、0.5242、0.4781和0.6796。我们的数据集和代码可在https://github.com/devvansh1997/bgvp上找到。
Pedestrian safety is one primary concern in autonomous driving. The under-representation of vulnerable groups in today's pedestrian datasets points to an urgent need for a dataset of vulnerable road users. In order to help train comprehensive models and subsequently drive research to improve the accuracy of vulnerable pedestrian identification, we first introduce a new dataset for vulnerable pedestrian detection in this paper: the BG Vulnerable Pedestrian (BGVP) dataset. The dataset includes four classes, i.e., Children Without Disability, Elderly without Disability, With Disability, and Non-Vulnerable. This dataset consists of images collected from the public domain and manually-annotated bounding boxes. In addition, on the proposed dataset, we have trained and tested five classic or state-of-the-art object detection models, i.e., YOLOv4, YOLOv5, YOLOX, Faster R-CNN, and EfficientDet. Our results indicate that YOLOX and YOLOv4 perform the best on our dataset, YOLOv4 scoring 0.7999 and YOLOX scoring 0.7779 on the mAP 0.5 metric, while YOLOX outperforms YOLOv4 by 3.8 percent on the mAP 0.5:0.95 metric. Generally speaking, all five detectors do well predicting the With Disability class and perform poorly in the Elderly Without Disability class. YOLOX consistently outperforms all other detectors on the mAP (0.5:0.95) per class metric, obtaining 0.5644, 0.5242, 0.4781, and 0.6796 for Children Without Disability, Elderly Without Disability, Non-vulnerable, and With Disability, respectively. Our dataset and codes are available at https://github.com/devvansh1997/BGVP.