论文标题
光子神经网络的双重自适应训练
Dual adaptive training of photonic neural networks
论文作者
论文摘要
光子神经网络(PNN)是一种非凡的模拟人工智能(AI)加速器,用光子而不是电子计算以具有低潜伏期,高能量效率和高平行性。但是,现有的培训方法无法解决大规模PNN中系统错误的广泛积累,从而导致物理系统模型性能显着降低。在这里,我们提出了双重自适应训练(DAT),该培训允许PNN模型适应实质性的系统错误并在部署过程中保留其性能。通过引入具有任务相似性关节优化的系统误差预测网络,DAT可以在双重背部培训期间实现PNN数值模型与物理系统以及高精确梯度计算之间的高相似性映射。我们通过在图像分类任务上使用衍射PNN和基于干扰的PNN来验证DAT的有效性。 DAT在重大系统错误下成功训练了大规模PNN,并保留了与无错误系统相当的模型分类精度。结果进一步证明了其优于最先进的原位训练方法。 DAT为构建大型PNN提供了重要的支持,以实现高级体系结构,并可以推广到具有模拟计算错误的其他类型的AI系统。
Photonic neural network (PNN) is a remarkable analog artificial intelligence (AI) accelerator that computes with photons instead of electrons to feature low latency, high energy efficiency, and high parallelism. However, the existing training approaches cannot address the extensive accumulation of systematic errors in large-scale PNNs, resulting in a significant decrease in model performance in physical systems. Here, we propose dual adaptive training (DAT) that allows the PNN model to adapt to substantial systematic errors and preserves its performance during the deployment. By introducing the systematic error prediction networks with task-similarity joint optimization, DAT achieves the high similarity mapping between the PNN numerical models and physical systems and high-accurate gradient calculations during the dual backpropagation training. We validated the effectiveness of DAT by using diffractive PNNs and interference-based PNNs on image classification tasks. DAT successfully trained large-scale PNNs under major systematic errors and preserved the model classification accuracies comparable to error-free systems. The results further demonstrated its superior performance over the state-of-the-art in situ training approaches. DAT provides critical support for constructing large-scale PNNs to achieve advanced architectures and can be generalized to other types of AI systems with analog computing errors.