论文标题

使用无层次锚定对象检测器对非典型和正常有丝分裂的基于深度学习的亚型

Deep learning-based Subtyping of Atypical and Normal Mitoses using a Hierarchical Anchor-Free Object Detector

论文作者

Aubreville, Marc, Ganz, Jonathan, Ammeling, Jonas, Donovan, Taryn A., Fick, Rutger H. J., Breininger, Katharina, Bertram, Christof A.

论文摘要

有丝分裂活性是评估许多肿瘤恶性肿瘤的关键。此外,已经证明,异常有丝分裂与正常有丝分裂的比例具有预后的意义。非典型有丝分裂图(MF)可以在形态上鉴定为具有隔离异常的染色单体。在这项工作中,我们首次根据有丝分裂的不同阶段的特征形态学表现,将有丝分裂数字自动亚型分为正常和非典型类别。使用公开可用的MIDOG21和TUPAC16乳腺癌有丝分裂数据集,两位专家将有丝分裂数字盲目地分为五个形态学类别。此外,我们设置了一个最新的对象检测管道,该管道通过封闭式分层子分类分支扩展了无锚的FCO方法。我们的标签实验表明,有丝分裂数字的亚型是一项具有挑战性的任务,容易受评估者间分歧,我们在24.89%的MF中发现了这一点。使用更多样化的MIDOG21数据集进行训练和TUPAC16进行测试,我们达到了非典型/正常MF的ROC AUC得分为0.552,ROC AUC得分为0.833,平均平均分类的ROC-AUC得分为0.977,用于区分小细胞的不同阶段。

Mitotic activity is key for the assessment of malignancy in many tumors. Moreover, it has been demonstrated that the proportion of abnormal mitosis to normal mitosis is of prognostic significance. Atypical mitotic figures (MF) can be identified morphologically as having segregation abnormalities of the chromatids. In this work, we perform, for the first time, automatic subtyping of mitotic figures into normal and atypical categories according to characteristic morphological appearances of the different phases of mitosis. Using the publicly available MIDOG21 and TUPAC16 breast cancer mitosis datasets, two experts blindly subtyped mitotic figures into five morphological categories. Further, we set up a state-of-the-art object detection pipeline extending the anchor-free FCOS approach with a gated hierarchical subclassification branch. Our labeling experiment indicated that subtyping of mitotic figures is a challenging task and prone to inter-rater disagreement, which we found in 24.89% of MF. Using the more diverse MIDOG21 dataset for training and TUPAC16 for testing, we reached a mean overall average precision score of 0.552, a ROC AUC score of 0.833 for atypical/normal MF and a mean class-averaged ROC-AUC score of 0.977 for discriminating the different phases of cells undergoing mitosis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源