论文标题
MFV的中性寿命可靠估计的方法
MFV approach to robust estimate of neutron lifetime
论文作者
论文摘要
为了评估中子的寿命,我们引入了一种新型的统计方法,以分析精确测量的更新汇编,包括2022个粒子数据组(PDG)的数据集。基于信息损失原则的最小化,与中位统计方法不同,我们应用最常见的值(MFV)程序来估计中子寿命,而与高斯或非高斯分布无关。提供一种更强大的方式,MFV的计算结果为$τ_n= 881.16^{+2.25} _ { - 2.35} $ s含统计bootstrap错误,而中位统计的结果为$τ_n= _ = 881.5^{+5.5^{+5.5} {+5.5} {+5.5} _ {+5.5} _ {-3} $ s的分布。使用不同的中央估计值,我们还构建了中子寿命测量的误差分布,并找到非高斯性,这仍然是有意义的。
Aiming at evaluating the lifetime of the neutron, we introduce a novel statistical method to analyse the updated compilation of precise measurements including the 2022 dataset of Particle Data Group (PDG). Based on the minimization for the information loss principle, unlike the median statistics method, we apply the most frequent value (MFV) procedure to estimate the neutron lifetime, irrespective of the Gaussian or non-Gaussian distributions. Providing a more robust way, the calculated result of the MFV is $τ_n=881.16^{+2.25}_{-2.35}$ s with statistical bootstrap errors, while the result of median statistics is $τ_n=881.5^{+5.5}_{-3}$ s according to the binomial distribution. Using the different central estimates, we also construct the error distributions of neutron lifetime measurements and find the non-Gaussianity, which is still meaningful.