论文标题
弱磁场中中性原子的快速核旋转门和电子核核
Fast nuclear-spin gates and electrons-nuclei entanglement of neutral atoms in weak magnetic fields
论文作者
论文摘要
我们提出了快速的Rydberg介导的纠缠,其中涉及二价原子的核自旋,以$^{171} $ yb为例。首先,我们显示了一个任意相位的核自旋控制相位栅极,可以在由鲜明的移位或三个脉冲辅助时用两个激光脉冲实现。第二,我们建议创建一个状态$(\ lvert \ text {cc} \ rangle _ {\ text {e}} \ otimes \ lvert或\lvertφ\ rangle _ {\ text {n}}}} + \ lvert或\lvertψ\ rangle _ {\ text {n}})/\ sqrt {2} $纠缠在两个原子的电子〜(e)和核旋转之间\ text {c} \ rangle _ {\ text {e}} $表示时钟状态。由于缺乏更好的术语,它被称为超级钟声,因为它模仿了``大'''''''''''''''''''。第三,我们展示了一个协议来创建一个三原子状态$(\ sqrt {3} \ lvert \ text {ccc} \ rangle _ {\ text {e}} \ otimes \lvertλ\lvertλ\ \ rangle _ { \ text {w} \ rangle _ {\ text {e}} \ otimes \ lvert \ lvert \ text {ghz} \ rangle _ {\ text {n}})/2 $ \ text {w} \ rangle _ {\ text {e}} $是地面锁定状态空间中的w状态,而$ \ lvert \ text {ghz} \ rangle _ {\ text {n}} $是Greenberger-Horne-Zeilinger-Zeilinger-Zeilinger-Zhorne-Zeilinger-ghz-Zeilinger-ghz(Ghz)状态的状态。这四个协议具有较高的内在忠诚度,不需要单点rydberg地址,并且可以在一个弱的高斯级磁场中以大的$ω_ {\ text {m}} $执行,因为它们涉及rydberg rydberg rydberg对每个ATOM中的核纺量态态的rydberg激发。后两个方案可以实现基于测量的贝尔,超ONTANGLED和GHZ状态的制备。
We present fast Rydberg-mediated entanglement involving nuclear spins of divalent atoms with $^{171}$Yb as an example. First, we show a nuclear-spin controlled phase gate of an arbitrary phase realizable either with two laser pulses when assisted by Stark shifts, or with three pulses. Second, we propose to create a state $(\lvert\text{cc}\rangle_{\text{e}} \otimes \lvertΦ\rangle_{\text{n}} + \lvertΦ\rangle_{\text{e}} \otimes \lvertΨ\rangle_{\text{n}} )/\sqrt{2}$ entangled between the electrons~(e) and nuclear spins~(n) of two atoms, where $\lvertΦ\rangle$ and $\lvertΨ\rangle$ are two orthogonal Bell states and $\lvert \text{c}\rangle_{\text{e}}$ denotes the clock state. For want of a better term, it is called a Super Bell State for it mimics a ``large'' Bell state incorporating three ``smaller'' Bell states. Third, we show a protocol to create a three-atom state $(\sqrt{3}\lvert\text{ccc}\rangle_{\text{e}} \otimes \lvertΛ\rangle_{\text{n}} + \lvert \text{W}\rangle_{\text{e}} \otimes \lvert \text{GHZ}\rangle_{\text{n}} )/2$, where $\lvertΛ\rangle_{\text{n}}$ is a nuclear-spin state, $\lvert \text{W}\rangle_{\text{e}}$ is a W state in the ground-clock state space, and $\lvert \text{GHZ}\rangle_{\text{n}}$ is the Greenberger-Horne-Zeilinger~(GHZ) state in the nuclear-spin state space. The four protocols possess high intrinsic fidelities, do not require single-site Rydberg addressing, and can be executed with large $Ω_{\text{m}}$ in a weak, Gauss-scale magnetic field for they involve Rydberg excitation of both nuclear-spin qubit states in each atom. The latter two protocols can enable measurement-based preparation of Bell, hyperentangled, and GHZ states.