论文标题
更高维度的成对螺旋性
Pairwise Helicity in Higher Dimensions
论文作者
论文摘要
对电荷和磁性电荷的散射幅度的研究已经确定了以前在四个维度上忽略的庞加莱组的多颗粒表示。这种表示将非平凡的量子数(称为成对的螺旋性)与渐近分离的颗粒对相关联,因此不能被描述为一颗粒状态的张量。我们将这种结构扩展到较高维度的来源和空间。我们首先在$ p $ - 形式的电动力学中建立了成对螺旋的动力学来源,该动力学与相互非本地麸皮结合在一起。然后,我们将这种成对的螺旋性解释为$(2)$成对的小组与一对不同的麸皮相关的量子数。我们进一步表征了可以用来诱导洛伦兹组的多颗粒或多武器表示的“较高”小组。
Studies of scattering amplitudes for electric and magnetic charges have identified previously overlooked multiparticle representations of the Poincaré group in four dimensions. Such representations associate nontrivial quantum numbers (known as pairwise helicities) with asymptotically separated pairs of particles, and thus cannot be described as tensor products of one-particle states. We extend this construction to sources and spacetimes of higher dimension. We first establish the dynamical origin of pairwise helicity in $p$-form electrodynamics coupled to mutually nonlocal branes. We then interpret this pairwise helicity as a quantum number under an $SO(2)$ pairwise little group associated with pairs of distinct branes. We further characterize the "higher" little groups that could in principle be used to induce multiparticle or multi-brane representations of the Lorentz group.