论文标题

大量波动微笑的马鞍点方法

Saddle-Point Approach to Large-Time Volatility Smile

论文作者

Yeung, Chun Yat, Hirsa, Ali

论文摘要

我们扩展了[1]中提出的鞍点方程,以推导大型模型的波动性微笑,提供其理论基础并研究其在经典模型中的应用。只要特征函数在巨大的时间内实现莱维型缩放行为,该方法就可以在特定模型下分析地研究大型的微笑行为,并以与随机性 - vlotity-vlotility-nistribility-nistribal-niverinal-niverization(SVI)相同。

We extend upon the saddle-point equation presented in [1] to derive large-time model-implied volatility smiles, providing its theoretical foundation and studying its applications in classical models. As long as characteristic function fulfills a Lévy-type scaling behavior in large time, the approach allows us to study analytically the large-time smile behaviors under specific models, and moreover, to reach a very wide class of arbitrage-free model-inspired parametrizations, in the same manner as stochastic-volatility-inspired (SVI).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源