论文标题

PYPOP7:一个用于基于人口的黑盒优化的纯Python库

PyPop7: A Pure-Python Library for Population-Based Black-Box Optimization

论文作者

Duan, Qiqi, Zhou, Guochen, Shao, Chang, Wang, Zhuowei, Feng, Mingyang, Huang, Yuwei, Tan, Yajing, Yang, Yijun, Zhao, Qi, Shi, Yuhui

论文摘要

在本文中,我们提供了一个名为Black-Box优化(BBO)的开源纯Python库。随着基于人群的方法(例如,进化算法,群体智能和模式搜索)变得越来越流行,PYPOP7的设计目标是为它们提供统一的API和优雅的实现,尤其是在挑战高维场景方面。由于这些基于人群的方法很容易受到臭名昭著的维度诅咒,因为随机抽样是其中大多数人的核心操作之一,因此最近已经提出了各种改进和增强,以或多或少地通过利用可能的问题结构来减轻或多或少地通过利用可能的问题结构来减轻:诸如搜索分布或空间的分解,较低的近似范围,范围的范围,范围为范围,范围降低了,并降低了范围,并降低了范围,并降低了范围,并降低了范围的范围,并降低了范围的范围和范围。平滑。这些新型的抽样策略可以更好地利用高维搜索空间中的不同问题结构,因此通常会导致收敛速度和/或更好的大规模BBO解决方案质量。现在,PYPOP7涵盖了一组良好的BBO算法系列中的许多重要进展,还提供了一个开放式访问界面,以添加最新或错过的黑盒优化器以进行进一步的功能扩展。其精心设计的源代码(根据GPL-3.0许可)和完整的在线文档(根据CC-BY 4.0许可)已在\ url {https://github.com/evolution-com./evitaly-intelligence/pyppop}和\ url {https:/

In this paper, we present an open-source pure-Python library called PyPop7 for black-box optimization (BBO). As population-based methods (e.g., evolutionary algorithms, swarm intelligence, and pattern search) become increasingly popular for BBO, the design goal of PyPop7 is to provide a unified API and elegant implementations for them, particularly in challenging high-dimensional scenarios. Since these population-based methods easily suffer from the notorious curse of dimensionality owing to random sampling as one of core operations for most of them, recently various improvements and enhancements have been proposed to alleviate this issue more or less mainly via exploiting possible problem structures: such as, decomposition of search distribution or space, low-memory approximation, low-rank metric learning, variance reduction, ensemble of random subspaces, model self-adaptation, and fitness smoothing. These novel sampling strategies could better exploit different problem structures in high-dimensional search space and therefore they often result in faster rates of convergence and/or better qualities of solution for large-scale BBO. Now PyPop7 has covered many of these important advances on a set of well-established BBO algorithm families and also provided an open-access interface to adding the latest or missed black-box optimizers for further functionality extensions. Its well-designed source code (under GPL-3.0 license) and full-fledged online documents (under CC-BY 4.0 license) have been freely available at \url{https://github.com/Evolutionary-Intelligence/pypop} and \url{https://pypop.readthedocs.io}, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源