论文标题
无序Fermi-Pasta-Pasta-ulam-tsingou lattices中的能量破坏和混乱
Energy-recurrence Breakdown and Chaos in Disordered Fermi-Pasta-Ulam-Tsingou Lattices
论文作者
论文摘要
在本文中,我们将经典的Fermi-Pasta-ulam-tsingou系统视为一种与谐波弹簧相互作用的粒子的模型,该模型具有带有二次的非线性术语(第一个系统)和一组具有二阶普通微分方程,具有可变性(第二个系统),与汉密尔顿运动方程相互,类似于汉密尔顿的运动方程。在没有可变性的情况下,第二个系统成为汉密尔顿的Fermi-Pasta-ulam-Tsingou系统运动方程(第一个系统)。将变异性引入了汉密尔顿的Fermi-Pasta-ulam-Tsingou系统运动方程,以考虑固有的变化(例如,由于制造过程),从而在其参数中引起了异质性。我们证明,小于阈值的变异性的百分比可以打破众所周知的能量复发现象并诱导在能量正常模式空间中的定位。但是,大于阈值的可变性百分比可能会使第二系统的轨迹在有限的时间内爆炸。使用多尺度的扩展,我们从分析中得出了两个正常模式近似,该近似解释了能量定位的机制并在第二系统中爆炸。我们还研究了两种系统的混乱行为,随着可变性百分比的增加,利用了最大Lyapunov指数和较小的对齐指数。我们的分析表明,当第二系统中几乎存在能量定位时,随着颗粒数量的增加,观察混乱的可能性更大。
In this paper, we consider the classic Fermi-Pasta-Ulam-Tsingou system as a model of interacting particles connected by harmonic springs with a quadratic nonlinear term (first system) and a set of second-order ordinary differential equations with variability (second system) that resembles Hamilton's equations of motion of the Fermi-Pasta-Ulam-Tsingou system. In the absence of variability, the second system becomes Hamilton's equations of motion of the Fermi-Pasta-Ulam-Tsingou system (first system). Variability is introduced to Hamilton's equations of motion of the Fermi-Pasta-Ulam-Tsingou system to take into account inherent variations (for example, due to manufacturing processes), giving rise to heterogeneity in its parameters. We demonstrate that a percentage of variability smaller than a threshold can break the well-known energy recurrence phenomenon and induce localization in the energy normal-mode space. However, percentage of variability larger than the threshold may make the trajectories of the second system blow up in finite time. Using a multiple-scale expansion, we derive analytically a two normal-mode approximation that explains the mechanism for energy localization and blow up in the second system. We also investigate the chaotic behavior of the two systems as the percentage of variability is increased, utilising the maximum Lyapunov exponent and Smaller Alignment Index. Our analysis shows that when there is almost energy localization in the second system, it is more probable to observe chaos, as the number of particles increases.