论文标题

通过EM信号分析和SVD DeNoing在嘈杂环境中检测代码注射

Detecting Code Injections in Noisy Environments Through EM Signal Analysis and SVD Denoising

论文作者

Miller, Ekaterina, Makrakis, Georgios Michail, Vedros, Kurt A., Kolias, Constantinos, Rieger, Craig, Barbara, Daniel

论文摘要

嵌入式设备在支持关键应用程序的网络中的渗透使它们成为攻击者和evildoers的利润丰厚的目标。但是,由于这些系统的内存和计算限制,可能不支持传统的保护机制。最近,电磁(EM)发射的分析收集了研究界的兴趣。因此,类似的保护系统已成为可行的解决方案,例如为资源约束设备提供外部的,非侵入性的控制流证明。不幸的是,当前的大多数工作未能解释现实生活中因素的含义,主要是环境噪声的影响。在这项工作中,我们引入了一个框架,该框架将奇异值分解(SVD)以及离群检测以及即使在可变的噪声条件下甚至在可变条件下发现嵌入式软件的恶意修改。我们提出的框架达到了高检测精度,即,即使对于极端噪声条件,即-10 snr,对于未知攻击的93 \%AUC得分。据我们所知,这是在基于EM的嵌入式设备基于EM的异常检测中成功解决了这种现实的限制因素,即环境噪声。

The penetration of embedded devices in networks that support critical applications has rendered them a lucrative target for attackers and evildoers. However, traditional protection mechanisms may not be supported due to the memory and computational limitations of these systems. Recently, the analysis of electromagnetic (EM) emanations has gathered the interest of the research community. Thus, analogous protection systems have emerged as a viable solution e.g., for providing external, non-intrusive control-flow attestation for resource-constrained devices. Unfortunately, the majority of current work fails to account for the implications of real-life factors, predominantly the impact of environmental noise. In this work, we introduce a framework that integrates singular value decomposition (SVD) along with outlier detection for discovering malicious modifications of embedded software even under variable conditions of noise. Our proposed framework achieves high detection accuracy i.e., above 93\% AUC score for unknown attacks, even for extreme noise conditions i.e., -10 SNR. To the best of our knowledge, this is the first time this realistic limiting factor, i.e., environmental noise, is successfully addressed in the context of EM-based anomaly detection for embedded devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源