论文标题
估算器:关于轨迹的有效且可扩展的运输模式分类框架
Estimator: An Effective and Scalable Framework for Transportation Mode Classification over Trajectories
论文作者
论文摘要
运输模式分类是预测移动对象运输模式的类标签的过程,已广泛应用于各种现实世界应用,例如交通管理,城市计算和行为研究。但是,现有的运输模式分类研究通常会提取轨迹数据的明确特征,但无法捕获影响分类性能的隐式特征。此外,大多数现有研究还倾向于将基于RNN的模型应用于嵌入轨迹,这仅适用于对小规模数据进行分类。为了应对上述挑战,我们提出了一个有效且可扩展的框架,用于对GPS轨迹的运输模式分类,缩写为估计器。估算器是在开发的CNN-TCN体系结构上建立的,该体系结构能够利用轨迹的空间和时间隐藏特征来达到高效和效率。估算器根据交通条件将整个交通空间分为脱节的空间区域,从而显着增强可扩展性,从而实现并行运输分类。使用八个公共现实生活数据集进行的广泛实验提供了证据表明,估计量i)实现了卓越的模型有效性(即99%的准确性和0.98 F1得分),从而极大地表现了最先进的效果; ii)表现出突出的模型效率,并在基于最新的学习方法上获得了7-40倍的加速; iii)显示出高模型的可伸缩性和鲁棒性,可实现大规模分类分析。
Transportation mode classification, the process of predicting the class labels of moving objects transportation modes, has been widely applied to a variety of real world applications, such as traffic management, urban computing, and behavior study. However, existing studies of transportation mode classification typically extract the explicit features of trajectory data but fail to capture the implicit features that affect the classification performance. In addition, most of the existing studies also prefer to apply RNN-based models to embed trajectories, which is only suitable for classifying small-scale data. To tackle the above challenges, we propose an effective and scalable framework for transportation mode classification over GPS trajectories, abbreviated Estimator. Estimator is established on a developed CNN-TCN architecture, which is capable of leveraging the spatial and temporal hidden features of trajectories to achieve high effectiveness and efficiency. Estimator partitions the entire traffic space into disjointed spatial regions according to traffic conditions, which enhances the scalability significantly and thus enables parallel transportation classification. Extensive experiments using eight public real-life datasets offer evidence that Estimator i) achieves superior model effectiveness (i.e., 99% Accuracy and 0.98 F1-score), which outperforms state-of-the-arts substantially; ii) exhibits prominent model efficiency, and obtains 7-40x speedups up over state-of-the-arts learning-based methods; and iii) shows high model scalability and robustness that enables large-scale classification analytics.