论文标题
涉及功能$ω(N)$和LCM功能的双曲线总和
Hyperbolic summation involving the function $Ω(n)$ and lcm
论文作者
论文摘要
我们研究总和$ \ sum_ {abc \ leq x}ω([[a,b,c])$,其中$ω(n)$表示$ n \ in \ mathbb {z} _ {z} _ {\ geq 1} $的$ n \ in $ n \的独特质量分隔线的数量,与乘以$($ c),b,b,b,b,c c. $ [a,b,c] = \ operatorName {lcm}(a,b,c)$。该总和在双曲线区域$ \ {(a,b,c)\ in \ mathbb {z} _ {\ geq 1}^3:abc \ leq x \} $上。
We study the sum $\sum_{abc \leq x} Ω([a,b,c])$, where $Ω(n)$ denotes the number of distinct prime divisors of $n \in \mathbb{Z}_{\geq 1}$, counted with multiplicity, and where $(a,b,c) = \gcd(a,b,c)$ and $[a,b,c] = \operatorname{lcm}(a,b,c)$. An asymptotic formula is derived for this sum over the hyperbolic region $\{(a,b,c) \in \mathbb{Z}_{\geq 1}^3 : abc \leq x\}$.