论文标题

1-d旋转中的多部分纠缠 - $ \ frac {1} {2} $ heisenberg antiferromagnet

Multipartite entanglement in the 1-D spin-$\frac{1}{2}$ Heisenberg Antiferromagnet

论文作者

Menon, Varun, Sherman, Nicholas E., Dupont, Maxime, Scheie, Allen O., Tennant, D. Alan, Moore, Joel E.

论文摘要

多部分纠缠是指多体量子系统的多个子系统之间的同时纠缠。尽管多部分纠缠很难在分析上进行量化,但众所周知,它可以通过量子Fisher信息(QFI)见证,该数量也可以与动态库博响应函数有关。在这项工作中,我们首先表明有限温度QFI通常可以用系统的静态结构因子表示,并进行校正,该校正消失为$ t \ rightarrow 0 $。我们认为,这意味着静态结构因子见证了在特征能量尺度以下的量子临界点附近的多部分纠缠,该温度由通用性能决定,直至非普遍幅度。因此,在具有已知静态结构因子的系统中,我们可以推断出多部分纠缠和低温纠缠深度的有限温度缩放,而不了解系统的全部动力响应功能。这对于研究1D量子关键系统特别有用,在该系统中,子功率法可以主导纠缠的生长,其中QFI的常规缩放理论分解。 1D自旋 - $ \ frac {1} {2} $抗磁性海森伯格模型是这样一个系统的重要例子,我们表明,海森堡链中的多部分纠缠在非温和的链接中以$ \ sim \ sim \ log(1/t)^{3/2} $。我们使用保形场理论和矩阵产品状态模拟对QFI的计算来验证这些预测。最后,我们讨论了结果对实验探测量子材料纠缠的含义,与KCUF $ _3 $中的中子散射数据相比,这是海森堡链很好地描述的材料。

Multipartite entanglement refers to the simultaneous entanglement between multiple subsystems of a many-body quantum system. While multipartite entanglement can be difficult to quantify analytically, it is known that it can be witnessed through the Quantum Fisher information (QFI), a quantity that can also be related to dynamical Kubo response functions. In this work, we first show that the finite temperature QFI can generally be expressed in terms of a static structure factor of the system, plus a correction that vanishes as $T\rightarrow 0$. We argue that this implies that the static structure factor witnesses multipartite entanglement near quantum critical points at temperatures below a characteristic energy scale that is determined by universal properties, up to a non-universal amplitude. Therefore, in systems with a known static structure factor, we can deduce finite temperature scaling of multipartite entanglement and low temperature entanglement depth without knowledge of the full dynamical response function of the system. This is particularly useful to study 1D quantum critical systems in which sub-power-law divergences can dominate entanglement growth, where the conventional scaling theory of the QFI breaks down. The 1D spin-$\frac{1}{2}$ antiferromagnetic Heisenberg model is an important example of such a system, and we show that multipartite entanglement in the Heisenberg chain diverges non-trivially as $\sim \log(1/T)^{3/2}$. We verify these predictions with calculations of the QFI using conformal field theory and matrix product state simulations. Finally we discuss the implications of our results for experiments to probe entanglement in quantum materials, comparing to neutron scattering data in KCuF$_3$, a material well-described by the Heisenberg chain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源