论文标题

$ g $ - 杂交的编织装饰

$G$-crossed braided zesting

论文作者

Delaney, Colleen, Galindo, César, Plavnik, Julia, Rowell, Eric, Zhang, Qing

论文摘要

对于有限的组$ g $,$ g $的编织融合类别是$ g $ raded的融合类别,具有其他结构,即$ g $ - action和$ g $ baiding。我们开发了$ g $ - 加入的编织式Zesting:一种明确的方法,用于从给定的$ g $ $ g $ od-g $ o的编织融合类别中通过类别和分级组$ g $相关的共同体学数据来构建新的编织融合类别。这是通过对作者最近描述的(编织)融合类别的类似结构进行调整来实现的。给定类别$ \ MATHCAL {C} $的所有$ G $ - 涂布的编织式均为$ g $ - 延伸其琐碎的组件,并且可以根据基于同质的Etingof,Nikshych和Ostrik的同质描述来解释。特别是,我们明确描述了哪些$ g $延误对应于$ g $涂的编织式Zestings。

For a finite group $G$, a $G$-crossed braided fusion category is $G$-graded fusion category with additional structures, namely a $G$-action and a $G$-braiding. We develop the notion of $G$-crossed braided zesting: an explicit method for constructing new $G$-crossed braided fusion categories from a given one by means of cohomological data associated with the invertible objects in the category and grading group $G$. This is achieved by adapting a similar construction for (braided) fusion categories recently described by the authors. All $G$-crossed braided zestings of a given category $\mathcal{C}$ are $G$-extensions of their trivial component and can be interpreted in terms of the homotopy-based description of Etingof, Nikshych and Ostrik. In particular, we explicitly describe which $G$-extensions correspond to $G$-crossed braided zestings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源