论文标题

Autodrive:一个全面,灵活和集成的数字双生态系统,用于增强自主驱动研究和教育

AutoDRIVE: A Comprehensive, Flexible and Integrated Digital Twin Ecosystem for Enhancing Autonomous Driving Research and Education

论文作者

Samak, Tanmay Vilas, Samak, Chinmay Vilas, Kandhasamy, Sivanathan, Krovi, Venkat, Xie, Ming

论文摘要

智能运输系统框架中的原型和验证硬件软件组件,子系统和系统需要模块化但灵活的开放式生态系统。这项工作介绍了我们试图开发这样的全面研究和教育生态系统(称为Autodrive),用于协同原型,模拟和部署与自动驾驶以及智能城市管理有关的网络物理解决方案。 AutoDrive具有软件以及具有公开可访问的规模车辆和基础架构组件的硬件测试接口。生态系统与各种开发框架兼容,并通过本地和分布式计算支持单一和多代理范式。最关键的是,Autodrive旨在可模块化地扩展以探索新兴技术,这项工作通过演示四个这样的部署用例来强调拟议生态系统的各种互补功能和能力:(i)使用Probabilistic Robotics方法来映射,本地化,路径计划和控制; (ii)使用计算机视觉和深层模仿学习的行为克隆; (iii)使用车辆对车辆通信和深入的增强学习的交叉路口遍历; (iv)使用车辆到基础结构通信和智能城市管理和智能城市管理。

Prototyping and validating hardware-software components, sub-systems and systems within the intelligent transportation system-of-systems framework requires a modular yet flexible and open-access ecosystem. This work presents our attempt towards developing such a comprehensive research and education ecosystem, called AutoDRIVE, for synergistically prototyping, simulating and deploying cyber-physical solutions pertaining to autonomous driving as well as smart city management. AutoDRIVE features both software as well as hardware-in-the-loop testing interfaces with openly accessible scaled vehicle and infrastructure components. The ecosystem is compatible with a variety of development frameworks, and supports both single and multi-agent paradigms through local as well as distributed computing. Most critically, AutoDRIVE is intended to be modularly expandable to explore emergent technologies, and this work highlights various complementary features and capabilities of the proposed ecosystem by demonstrating four such deployment use-cases: (i) autonomous parking using probabilistic robotics approach for mapping, localization, path planning and control; (ii) behavioral cloning using computer vision and deep imitation learning; (iii) intersection traversal using vehicle-to-vehicle communication and deep reinforcement learning; and (iv) smart city management using vehicle-to-infrastructure communication and internet-of-things.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源