论文标题
对于非负RICCI曲率的Finsler歧管的等量不平等现象
Isoperimetric inequality for Finsler manifolds with non-negative Ricci curvature
论文作者
论文摘要
我们证明,对于具有非负RICCI曲率和欧几里得体积增长的测得的Finsler歧管的尖锐等等不平等。在这种不平等的情况下,我们还证明了这种不平等的刚性结果,在等等集合的界限和空间的有限可逆性下。 结果,我们在不可逆的环境下推断了欧几里得空间中锥体的加权各向异性等速度不平等的刚性。
We prove a sharp isoperimetric inequality for measured Finsler manifolds having non-negative Ricci curvature and Euclidean volume growth. We also prove a rigidity result for this inequality, under the additional hypotheses of boundedness of the isoperimetric set and the finite reversibility of the space. As a consequence, we deduce the rigidity of the weighted anisotropic isoperimetric inequality for cones in the Euclidean space, in the irreversible setting.