论文标题
消除抗铁晶体管的挥发性记忆中的泄漏
Eliminating Leakage in Volatile Memory with Anti-Ferroelectric Transistors
论文作者
论文摘要
缓存是许多通用处理器和域特异性加速器中的临时数据存储模块。它的密度,功率,速度和可靠性在增强整体系统性能和服务质量方面起着至关重要的作用。传统的挥发性记忆,包括互补的金属氧化物 - 氧化物 - 氧化通导器技术中的静态随机记忆(SRAM)和嵌入式动态随机访问记忆(EDRAM),具有高性能和良好的可靠性。但是,SRAM和EDRAM的固有泄漏都阻碍了较小的特征尺寸和更高的能源效率的进一步改善。尽管新兴的非易失性记忆可以有效消除泄漏,但较低速度和降解的可靠性的惩罚是显着的。本文揭示了一个新的机会,可以超出现有挥发性和非挥发性记忆的已知范式之外无泄漏的挥发性静态记忆。通过在夹紧电压偏置的协助下进行双孔能量景观,首次实现无泄漏和无刷新状态保留的挥发性记忆。非易失性记忆的超低泄漏以及挥发性记忆的速度,能量和可靠性优势都强调了这一新记忆。使用内部抗铁电场效应晶体管(AFEFETS)证明了概念验证记忆,可提供约1012个周期的外推耐力,保留时间超过10年,没有下端阈值泄漏渠道泄漏电流。这种基于AFEFET的内存的新概念可以在所有现有内存解决方案之外的密度,功率和可靠性之间取得改善的平衡。
Cache serves as a temporary data memory module in many general-purpose processors and domain-specific accelerators. Its density, power, speed, and reliability play a critical role in enhancing the overall system performance and quality of service. Conventional volatile memories, including static random-access memory (SRAM) and embedded dynamic random-access memory (eDRAM) in the complementary metal-oxide-semiconductor technology, have high performance and good reliability. However, the inherent leakage in both SRAM and eDRAM hinders further improvement towards smaller feature sizes and higher energy efficiency. Although the emerging nonvolatile memories can eliminate the leakage efficiently, the penalties of lower speed and degraded reliability are significant. This article reveals a new opportunity towards leakage-free volatile static memory beyond the known paradigms of existing volatile and nonvolatile memories. By engineering a double-well energy landscape with the assistance of a clamping voltage bias, leakage-free and refresh-free state retention of volatile memory is achieved for the first time. This new memory is highlighted by both the ultra-low leakage of nonvolatile memories and the speed, energy, and reliability advantages of volatile memories. A proof-of-concept memory is demonstrated using in-house anti-ferroelectric field-effect transistors (AFeFETs), delivering an extrapolated endurance of about 1012 cycles, a retention time of over 10 years, and no subthreshold channel leakage current. Such a new concept of AFeFET-based memory enables an improved balance between density, power, and reliability beyond all existing memory solutions.