论文标题
枢轴:提示视频持续学习
PIVOT: Prompting for Video Continual Learning
论文作者
论文摘要
由于数据可用性,存储配额,隐私法规和昂贵的注释过程,现代机器学习管道受到限制。这些约束使在这种动态注释集上训练和更新大规模模型变得困难或不可能。持续学习直接解决了这个问题,其最终目的是设计方法,其中深层神经网络有效地学习了新(看不见)类的相关模式,而没有显着改变其对先前学到的类别的表现。在本文中,我们解决了视频数据持续学习的问题。我们介绍了Pivot,这是一种新型方法,该方法利用图像域的预训练模型中的广泛知识,从而减少了可训练的参数的数量和相关的遗忘。与以前的方法不同,我们的方法是第一种有效地使用促进机制进行持续学习的方法,而无需任何域内培训。我们的实验表明,Pivot在20任任务活动网设置上将最新方法提高了27%。
Modern machine learning pipelines are limited due to data availability, storage quotas, privacy regulations, and expensive annotation processes. These constraints make it difficult or impossible to train and update large-scale models on such dynamic annotated sets. Continual learning directly approaches this problem, with the ultimate goal of devising methods where a deep neural network effectively learns relevant patterns for new (unseen) classes, without significantly altering its performance on previously learned ones. In this paper, we address the problem of continual learning for video data. We introduce PIVOT, a novel method that leverages extensive knowledge in pre-trained models from the image domain, thereby reducing the number of trainable parameters and the associated forgetting. Unlike previous methods, ours is the first approach that effectively uses prompting mechanisms for continual learning without any in-domain pre-training. Our experiments show that PIVOT improves state-of-the-art methods by a significant 27% on the 20-task ActivityNet setup.