论文标题

Noings2Conconcontrast:多对比度融合启用自我监督的层析成像图像Denoising

Noise2Contrast: Multi-Contrast Fusion Enables Self-Supervised Tomographic Image Denoising

论文作者

Wagner, Fabian, Thies, Mareike, Pfaff, Laura, Maul, Noah, Pechmann, Sabrina, Gu, Mingxuan, Utz, Jonas, Aust, Oliver, Weidner, Daniela, Neag, Georgiana, Uderhardt, Stefan, Choi, Jang-Hwan, Maier, Andreas

论文摘要

自我监督的图像denoising技术是方便的方法,可以允许训练deNo型模型,而无需地面真相无噪声数据。现有方法通常优化从相似图像(例如相邻断层扫描切片)的多个嘈杂实现计算得出的损失指标。但是,这些方法未能利用在MRI或双能量CT等医学成像方式中常规获得的多种对比。在这项工作中,我们提出了新的自我监督训练方案Noige2Conconcontast,该方案结合了来自多个测量图像对比度的信息以训练Denoising模型。我们与域转移操作员一起堆叠deno,以利用不同图像对比的独立噪声实现,从而导致自我监督的损失。受过训练的denoising操作员取得了令人信服的定量和定性结果,在脑MRI数据上的最先进的自我监督方法优于4.7-7-11.0%/4.8-7.3%(PSNR/SSIM),并在43.6-50.5%/57.5%/57.1%(psnr/ssim)上与psnr/simsim nim-neger n of n of n x-inm nerer。到嘈杂的基线。我们对不同实际测量数据集的实验表明,Noige2Contrast训练将概括为其他多对比度成像方式。

Self-supervised image denoising techniques emerged as convenient methods that allow training denoising models without requiring ground-truth noise-free data. Existing methods usually optimize loss metrics that are calculated from multiple noisy realizations of similar images, e.g., from neighboring tomographic slices. However, those approaches fail to utilize the multiple contrasts that are routinely acquired in medical imaging modalities like MRI or dual-energy CT. In this work, we propose the new self-supervised training scheme Noise2Contrast that combines information from multiple measured image contrasts to train a denoising model. We stack denoising with domain-transfer operators to utilize the independent noise realizations of different image contrasts to derive a self-supervised loss. The trained denoising operator achieves convincing quantitative and qualitative results, outperforming state-of-the-art self-supervised methods by 4.7-11.0%/4.8-7.3% (PSNR/SSIM) on brain MRI data and by 43.6-50.5%/57.1-77.1% (PSNR/SSIM) on dual-energy CT X-ray microscopy data with respect to the noisy baseline. Our experiments on different real measured data sets indicate that Noise2Contrast training generalizes to other multi-contrast imaging modalities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源