论文标题
基于模型的对照算法,用于四倍罐系统:实验比较
Model-based control algorithms for the quadruple tank system: An experimental comparison
论文作者
论文摘要
我们比较比例综合衍生(PID)控制,线性模型预测控制(LMPC)和非线性模型预测控制(NMPC)的性能,以进行四倍罐系统(QTS)的物理设置。我们根据测量过程数据和最大可能性(ML)标准,使用预测错误方法来估算QTS连续二散时代随机非线性模型中的参数。在NMPC算法中,我们使用此确定的连续二散时间随机非线性模型。 LMPC算法基于该非线性模型的线性化。我们使用Skogestad的IMC调整规则使用线性化模型的传输函数表示来调整PID控制器。观察到的跟踪误差的规范和操纵变量的变化速率用于比较控制算法的性能。对于预定义的时间变化的设定值轨迹,LMPC和NMPC的性能优于PID控制器。 LMPC和NMPC算法具有相似的性能。
We compare the performance of proportional-integral-derivative (PID) control, linear model predictive control (LMPC), and nonlinear model predictive control (NMPC) for a physical setup of the quadruple tank system (QTS). We estimate the parameters in a continuous-discrete time stochastic nonlinear model for the QTS using a prediction-error-method based on the measured process data and a maximum likelihood (ML) criterion. In the NMPC algorithm, we use this identified continuous-discrete time stochastic nonlinear model. The LMPC algorithm is based on a linearization of this nonlinear model. We tune the PID controller using Skogestad's IMC tuning rules using a transfer function representation of the linearized model. Norms of the observed tracking errors and the rate of change of the manipulated variables are used to compare the performance of the control algorithms. The LMPC and NMPC perform better than the PID controller for a predefined time-varying setpoint trajectory. The LMPC and NMPC algorithms have similar performance.