论文标题
AUE-IPA:基于AU参与的婴儿疼痛评估方法
AuE-IPA: An AU Engagement Based Infant Pain Assessment Method
论文作者
论文摘要
最近的研究发现,婴儿期的疼痛对婴儿发育有重大影响,包括心理问题,可能的脑损伤和成年后的疼痛敏感性。但是,由于缺乏专家以及婴儿无法口头表达疼痛的事实,因此很难评估婴儿疼痛。大多数现有的婴儿疼痛评估系统直接将成人方法应用于忽略婴儿表情和成人表情之间差异的婴儿。同时,随着面部动作编码系统的研究继续前进,使用动作单元(AUS)为表达识别和疼痛评估提供了新的可能性。在本文中,提出了一种新型的AUE-IPA方法,用于通过利用不同的AUS参与度来评估婴儿疼痛。首先,通过分析端到端疼痛评估模型的类激活图,揭示了婴儿疼痛中AU的不同参与水平。然后在回归模型中使用高级AUS的强度来实现自动婴儿疼痛评估。提出的模型对YouTube免疫数据集,YouTube血液测试数据集和ICOPEVID数据集进行了训练和实验。实验结果表明,我们的AUE-IPA方法比端到端评估模型和经典的PSPI指标更适用于婴儿,并且具有更强的概括能力。
Recent studies have found that pain in infancy has a significant impact on infant development, including psychological problems, possible brain injury, and pain sensitivity in adulthood. However, due to the lack of specialists and the fact that infants are unable to express verbally their experience of pain, it is difficult to assess infant pain. Most existing infant pain assessment systems directly apply adult methods to infants ignoring the differences between infant expressions and adult expressions. Meanwhile, as the study of facial action coding system continues to advance, the use of action units (AUs) opens up new possibilities for expression recognition and pain assessment. In this paper, a novel AuE-IPA method is proposed for assessing infant pain by leveraging different engagement levels of AUs. First, different engagement levels of AUs in infant pain are revealed, by analyzing the class activation map of an end-to-end pain assessment model. The intensities of top-engaged AUs are then used in a regression model for achieving automatic infant pain assessment. The model proposed is trained and experimented on YouTube Immunization dataset, YouTube Blood Test dataset, and iCOPEVid dataset. The experimental results show that our AuE-IPA method is more applicable to infants and possesses stronger generalization ability than end-to-end assessment model and the classic PSPI metric.